

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4727

Further Pure Mathematics 3

Thursday

15 JUNE 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of 1 + 2i, giving your answers in the form a + ib. [3]
 - (b) For the group of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$. [2]
- 2 (a) Given that $z_1 = 2e^{\frac{1}{6}\pi i}$ and $z_2 = 3e^{\frac{1}{4}\pi i}$, express $z_1 z_2$ and $\frac{z_1}{z_2}$ in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.
 - (b) Given that $w = 2(\cos \frac{1}{8}\pi + i \sin \frac{1}{8}\pi)$, express w^{-5} in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $0 \le \theta < 2\pi$.
- Find the perpendicular distance from the point with position vector $12\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ to the line with equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + t(8\mathbf{i} + 3\mathbf{j} 6\mathbf{k})$.
- 4 Find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{x^2y}{1+x^3} = x^2$$

for which y = 1 when x = 0, expressing your answer in the form y = f(x). [8]

- 5 A line l_1 has equation $\frac{x}{2} = \frac{y+4}{3} = \frac{z+9}{5}$.
 - (i) Find the cartesian equation of the plane which is parallel to l_1 and which contains the points (2, 1, 5) and (0, -1, 5).
 - (ii) Write down the position vector of a point on l_1 with parameter t. [1]
 - (iii) Hence, or otherwise, find an equation of the line l_2 which intersects l_1 at right angles and which passes through the point (-5, 3, 4). Give your answer in the form $\frac{x-a}{p} = \frac{y-b}{a} = \frac{z-c}{r}$. [4]
- 6 (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = \sin x. \tag{6}$$

(ii) Find the solution of the differential equation for which y = 0 and $\frac{dy}{dx} = \frac{4}{3}$ when x = 0. [4]

7 The series C and S are defined for $0 < \theta < \pi$ by

$$C = 1 + \cos \theta + \cos 2\theta + \cos 3\theta + \cos 4\theta + \cos 5\theta,$$

$$S = \sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta + \sin 5\theta.$$

(i) Show that
$$C + iS = \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} e^{\frac{5}{2}i\theta}$$
. [4]

- (ii) Deduce that $C = \sin 3\theta \cos \frac{5}{2}\theta \csc \frac{1}{2}\theta$ and write down the corresponding expression for S. [4]
- (iii) Hence find the values of θ , in the range $0 < \theta < \pi$, for which C = S. [4]
- 8 A group D of order 10 is generated by the elements a and r, with the properties $a^2 = e$, $r^5 = e$ and $r^4a = ar$, where e is the identity. Part of the operation table is shown below.

	e	a	r	r^2	r^3		ar	ar^2	ar^3	ar^4
e	e	а	r	r^2	r^3	r^4	ar	ar^2	ar^3	ar^4
a	a	e	ar	ar^2	ar^3	ar^4	1 - 			
r	r		r^2	r^3	r^4	e	 !			
r^2	r^2		r^3	r^4	e	r	! ! !			
r^3	r ³		r^4	e	r	r^2	į !			
r^4	r^4	ar	e	r	r^2	r^3	i i			
ar	ar		ar^2	ar^3	ar^4	а	 			
ar^2	ar^2		ar^3	ar^4	a	ar	i !		\Box	
ar^3	ar^3		ar^4	а	ar	ar^2	!	1		
ar^4	ar ⁴		a	ar	ar^2	ar^3	 			

- (i) Give a reason why D is not commutative. [1]
- (ii) Write down the orders of any possible proper subgroups of D. [2]
- (iii) List the elements of a proper subgroup which contains

(a) the element
$$a$$
, [1]

(b) the element
$$r$$
. [1]

- (iv) Determine the order of each of the elements r^3 , ar and ar^2 . [4]
- (v) Copy and complete the section of the table marked E, showing the products of the elements ar, ar^2 , ar^3 and ar^4 . [5]

1 (a) Identity = $1+0i$	B1	For correct identity. Allow 1
$Inverse = \frac{1}{1+2i}$	B1	For $\frac{1}{1+2i}$ seen or implied
$= \frac{1}{1+2i} \times \frac{1-2i}{1-2i} = \frac{1}{5} - \frac{2}{5}i$	B1 3	For correct inverse AEFcartesian
(b) Identity = $ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	B1	For correct identity
$Inverse = \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix}$	B1 2	For correct inverse
	5	
2 (a) $(z_1 z_2 =) 6 e^{\frac{5}{12}\pi i}$	B1 B1	For modulus = 6 For argument = $\frac{5}{12}\pi$
$\left(\frac{z_1}{z_2} = \frac{2}{3} e^{-\frac{1}{12}\pi i} = \right) \frac{2}{3} e^{\frac{23}{12}\pi i}$	M1 A1 4	For subtracting arguments For correct answer
(b) $\left(w^{-5} = \right) 2^{-5} \operatorname{cis}\left(-\frac{5}{8}\pi\right)$	M1 A1	For use of de Moivre For $-\frac{5}{8}\pi$ seen or implied
$=\frac{1}{32}\left(\cos\frac{11}{8}\pi+i\sin\frac{11}{8}\pi\right)$	A1 3	For correct answer (allow 2^{-5} and $\operatorname{cis} \frac{11}{8}\pi$)
	7	

3 EITHER $c-a = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \times [8, 3, -6]$	M1*	For attempt at vector product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
$\mathbf{n} = \pm [-12, 50, 9]$	A1 √	For obtaining n . f.t. from incorrect $\mathbf{c} - \mathbf{a}$
$d = \frac{ \mathbf{n} }{ [8, 3, -6] }$	M1 (dep*)	For dividing $ \mathbf{n} $ by magnitude of $[8, 3, -6]$
$=\frac{\sqrt{2725}}{\sqrt{109}}$	A1	For either magnitude correct
(d =) 5	A1	For correct distance CAO
$OR \ \mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
$\cos \theta = \pm \frac{109}{\sqrt{134}\sqrt{109}} = \pm \sqrt{\frac{109}{134}}$	A 1 √	For correct $\cos \theta$ AEF . f.t. from incorrect $\mathbf{c} - \mathbf{a}$
$d = \sqrt{134} \sin \theta$	M1 (dep*) A1	For using trigonometry for perpendicular distance For correct expression for d in terms of θ
(d =) 5 OR	A1	For correct distance CAO
$OR \mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
$x = \frac{109}{\sqrt{109}} = \sqrt{109}$	A1 √	For finding projection of $\mathbf{c} - \mathbf{a}$ onto $[8, 3, -6]$ f.t. from incorrect $\mathbf{c} - \mathbf{a}$
$d = \sqrt{134 - 109}$	M1 (dep*) A1	For using Pythagoras for perpendicular distance For correct expression for d
(d =) 5	A1	For correct distance CAO
<i>OR</i> CP = $\pm[-11+8t, -3+3t, 2-6t]$	B1	For finding a vector from $C(12, 5, 3)$ to a point on the line
CP \cdot [8, 3, -6] = 0	M1*	For using scalar product for perpendicularity
$t = \pm 1 \ OR \ P = (9, 5, -1)$	A 1 √	For correct point. f.t. from incorrect CP
$d = \sqrt{3^2 + 0^2 + 4^2}$	M1 (dep*)	For finding magnitude of CP
(d =) 5	A1 6	For correct expression for d For correct distance CAO
		SR Obtain $\mathbf{CP} = [11, 3, -2] - [8, 3, -6] = \pm [3, 0, 4]$ B1
		Verify $[3, 0, 4] \cdot [8, 3, -6] = 0$ M1*
		$d = \sqrt{3^2 + 0^2 + 4^2} = 5$ M1(dep*) A1 A1 (maximum 5 / 6)
	6	

4 Integrating factor $e^{\int -\frac{x^2}{1+x^3}} dx$	M1	For correct process for finding integrating factor
$= e^{-\frac{1}{3}\ln(1+x^3)} = \left(1+x^3\right)^{-\frac{1}{3}}$	A1	For correct IF, simplified (here or later)
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(1 + x^3 \right)^{-\frac{1}{3}} \right) = \frac{x^2}{\left(1 + x^3 \right)^{\frac{1}{3}}}$	M1	For multiplying through by their IF
$\Rightarrow y(1+x^3)^{-\frac{1}{3}} = \frac{1}{2}(1+x^3)^{\frac{2}{3}} (+c)$	M1	For integrating RHS to obtain $A(1+x^3)^k OR \ln A(1+x^3)^k$
$\Rightarrow 1 = \frac{1}{2} + c \Rightarrow c = \frac{1}{2}$	A1 M1 A1 √	For correct integration ($+c$ not required here) For substituting (0, 1) into GS (including $+c$) For correct c . f.t. from their GS
$\Rightarrow y = \frac{1}{2}(1+x^3) + \frac{1}{2}(1+x^3)^{\frac{1}{3}}$	A1	For correct solution. AEF in form $y = f(x)$
2() 2()	8	
5 (i) EITHER $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \pm k [-10, 10, -2]$	M1 A1 √	For finding perpendicular to plane For correct n . f.t. from incorrect b
Use $(2, 1, 5)$ $OR(0, -1, 5)$	M1	For substituting a point into equation $ax + by + cz = d$ where $[a, b, c] =$ their n
$\Rightarrow 5x - 5y + z = 10$	A1	For correct cartesian equation AEF
<i>OR</i> $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
e.g. $\mathbf{r} = [2, 1, 5] + \lambda[2, 2, 0] + \mu[2, 3, 5]$	M1	For stating parametric equation of plane
$[x, y, z] = [2 + 2\lambda + 2\mu, 1 + 2\lambda + 3\mu, 5 + 5\mu]$	A1 √	For writing 3 equations in <i>x</i> , <i>y</i> , <i>z</i> f.t. from incorrect b
	M1	For eliminating λ and μ
$\Rightarrow 5x - 5y + z = 10$	A1 5	For correct cartesian equation AEF
(ii) $[2t, 3t-4, 5t-9]$	B1 1	For stating a point A on l_1 with parameter t AEF
(iii) $\pm [2t+5, 3t-7, 5t-13]$	M1	For finding direction of l_2 from A and $(-5,3,4)$
$\pm [2t+5, 3t-7, 5t-13] \cdot [2, 3, 5] = 0$	M1	For using scalar product for perpendicularity with
	A 1	any vector involving t
$\Rightarrow t = 2$ $x + 5, y - 3, z - 4, x - 4, y - 2, z - 1$	A1	For correct value of <i>t</i>
$\frac{x+5}{9} = \frac{y-3}{-1} = \frac{z-4}{-3} OR \frac{x-4}{9} = \frac{y-2}{-1} = \frac{z-1}{-3}$	A1 4	For a correct equation AEFcartesian
		SR For $2p + 3q + 5r = 0$ and no further progress
		award B1
	10	

6 (i) $(m^2 + 4 = 0 \Rightarrow) m = \pm 2i$	B1	For correct solutions of auxiliary equation (may be implied by correct CF)		
$CF = A\cos 2x + B\sin 2x$	B1	For correct CF		
	D.1	(AEtrig but not $Ae^{2ix} + Be^{-2ix}$ only)		
$PI = p \sin x (+ q \cos x)$	B1	State a trial PI with at least $p \sin x$		
$-p\sin x (-q\cos x) + 4p\sin x (+4q\cos x) = \sin x$	M1	For substituting PI into DE		
$\Rightarrow p = \frac{1}{3}, q = 0$	A1	For correct p and q (which may be implied)		
$\Rightarrow y = A\cos 2x + B\sin 2x + \frac{1}{3}\sin x$	B1 √ 6	For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI		
$\mathbf{(ii)}\ (0,0) \Rightarrow A = 0$	B1 √	For correct equation in <i>A</i> and/or <i>B</i> f.t. from their GS		
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2B\cos 2x + \frac{1}{3}\cos x \Rightarrow \frac{4}{3} = 2B + \frac{1}{3}$	M1	For differentiating their GS and substituting		
dx 3 3 3		values for x and $\frac{dy}{dx}$		
$A = 0, \ B = \frac{1}{2}$	A1	For correct A and B		
_		Allow $A = -\frac{1}{4}i$, $B = \frac{1}{4}i$ from CF $Ae^{2ix} + Be^{-2ix}$		
$\Rightarrow y = \frac{1}{2}\sin 2x + \frac{1}{3}\sin x$	A1 4	For stating correct solution CAO		
	10			
7 (i) $C + iS = 1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta} + e^{5i\theta}$	M1	For using de Moivre, showing at least 3 terms		
$=\frac{e^{6i\theta}-1}{e^{i\theta}-1}$	M1	For recognising GP		
	A1	For correct GP sum		
$= \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} \cdot \frac{e^{3i\theta}}{e^{\frac{1}{2}i\theta}} = \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} e^{\frac{5}{2}i\theta}$	A1 4	For obtaining correct expression AG		
(ii) $C + iS = \frac{2i\sin 3\theta}{2i\sin \frac{1}{2}\theta} \cdot e^{\frac{5}{2}i\theta}$	M1	For expressing numerator and denominator in terms of sines		
$2i\sin\frac{1}{2}\theta$	A1	For $k \sin 3\theta$ and $k \sin \frac{1}{2}\theta$		
$Re \Rightarrow C = \sin 3\theta \cos \frac{5}{2}\theta \csc \frac{1}{2}\theta$	A1	For correct expression AG		
$Im \Rightarrow S = \sin 3\theta \sin \frac{5}{2}\theta \csc \frac{1}{2}\theta$	B1 4	For correct expression		
(iii) $C = S \implies \sin 3\theta = 0, \tan \frac{5}{2}\theta = 1$	M1	For either equation deduced AEF		
1 2		Ignore values outside $0 < \theta < \pi$		
$\theta = \frac{1}{3}\pi, \frac{2}{3}\pi$	A1	For both values correct and no extras		
$\theta = \frac{1}{10}\pi, \frac{1}{2}\pi, \frac{9}{10}\pi$	A2 4	For all values correct and no extras. Allow A1		
	12	for any 1 value <i>OR</i> all correct with extras		

8 (i) r^4 . $a \neq a$. r^4	B1 1	For stating the non-commutative product in the given table, or justifying another correct one	
(ii) Possible subgroups order 2, 5	B1 B1 2	For either order stated For both orders stated, and no more (Ignore 1)	
(iii) (a) $\{e, a\}$	B1	For correct subgroup	
(b) $\{e, r, r^2, r^3, r^4\}$	B1 2	For correct subgroup	
(iv) order of $r^3 = 5$	B1	For correct order	
$(ar)^2 = ar.ar = r^4 a.ar = e$	M1	For attempt to find $(ar)^m = e \ OR \ (ar^2)^m = e$	
\Rightarrow order of $ar = 2$	A1	For correct order	
$(ar^2)^2 = ar^2 ar \cdot r = ar^2 r^4 a \cdot r = ara \cdot r = e$			
\Rightarrow order of $ar^2 = 2$	A1 4	For correct order	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		If the border elements $ar ar^2 ar^3 ar^4$ are not written, it will be assumed that the products arise from that order	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 B1 B1 B1 5	For all 16 elements of the form e or r^m For all 4 elements in leading diagonal = e For no repeated elements in any completed row or column For any two rows or columns correct For all elements correct	
	14		